

## WDM for Military Platforms April 18 - 19th, 2000



## Micro-WDM for Reconfigurable Military Information Systems

William P Krug
The Boeing Company
Seattle, WA
william.p.krug@boeing.com





## Micro-WDM for Reconfigurable Military Information Systems

- Platforms and WDM
- Micro-WDM Comparison
- Switch Comparison
- Roadmap

## Micro-WDM for Reconfigurable Military Information Systems

## A Potentially Ubiquitous Technology

Space: Space-Based Radar

- Air: UCAV

Ground: Telco

Sea: Advanced Networks

### System Benefits Include:

- Reduced Size, Weight, Power, Parts Count, System Complexity
- Growth/ Upgrade Facilitation
- Increased Bandwidth, Fault Tolerance, System Flexibility

### **Configurable High Speed Optical Networks (Near Term)**

#### Tactical Aircraft

- High Bandwidth Fiber Optic I/O for Remote Sensor Fusion, Processing, Storage, and Control
  - IR (eg. hyperspectral), Video, SAR, ESM
  - Microprocessor and Memory
  - Flight Control (Migration from Electrical to Optical)
- Optical Routed Paths (Mesh) (eg. Monterey/ Cisco)
  - Electrical SEM-E Circuit Switch Upgrade
- Scalable, Optical Routable Paths for "Very High Speed Optical Networks" (VHSON)



VHSON INTERFACE CIRCUIT (VIC)

## Configurable Optical Wavelength and IP Network (Notional)



Configurable optical wavelength and IP networks will:

- switch low speed packets of IP data
- establish wavelength circuits or paths for high speed IP data
- establish paths in real-time

## Power Dissipation of This Wavelength Router Will Be Greatly Reduced with an Optical Switch Core!



## Dynamic Wavelength Routing Protocol (WARP) Distributed Mesh WaRP Restoration Times



Number of Paths Restored

## **Micro-WDM Technology for Reconfigurable Network Systems**

| Technology                                | COTS<br>Array WG Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Photonic<br>Bandgap (PBG)                                     | Microresonators<br>(MR)                              |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|--|
| State-of-Art<br>R&D                       | AVVG-1x16-100G-1-5-M fearer from the Park fr |                                                               |                                                      |  |
|                                           | Photonic Integration Research Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Joannopoulos et. al. (MIT) theory & exp.                      | Nanovation Tech. Inc.<br>S. T. Ho et. al.            |  |
| Maturity                                  | 64 Channel<br>Devices Available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Patents, 10 yrs. R&D<br>1 channel filter<br>5 yr. est. avail. | Patents, 10 yrs. R&D few channel filter avail. today |  |
| Insertion Loss                            | 8 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3-4 dB (from fiber)                                           | 3-4 dB (from fiber)                                  |  |
| Crosstalk                                 | 22 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TBD                                                           | TBD                                                  |  |
| Potential Channel<br>Separation (1500 nm) | 50 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 50 GHz                                                      | < 50 GHz                                             |  |
| Size                                      | 10 cm x 5 cm x 2 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 μm³ (fiber driven)                                          | 1 μm³ (fiber driven)                                 |  |

# Approaches to Micro-WDM Photonic Crystals with Photonic Bandgaps (PBG)

| Approach                                                                                          | Technology                                                            | Advantages                                                                                                                                                          |  |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PBG microcavity filters in series (see Fan et al, <i>Opt. Express</i> , 3, p.4, 1998 for example) | Photonic crystal of dielectric rods or PBG air bridge in Si           | <ul> <li>Very large Q cavities little crosstalk between channels</li> <li>Tolerance to fabrication imperfections</li> <li>Very small ~(λ/2n)<sup>3</sup></li> </ul> |  |
| Mi                                                                                                | croresonators (MR)                                                    |                                                                                                                                                                     |  |
| Approach                                                                                          | Technology                                                            | Advantages                                                                                                                                                          |  |
| • Extension of high density integrated optics with large ∆n                                       | <ul><li>Microresonators</li><li>Nanovation</li><li>NWU, MIT</li></ul> | • Commercially available in few element arrays                                                                                                                      |  |

### **Photonic Crystal Super- Prisms**

## **Examples of Photonic Band Gaps**

#### Creation of a 3-D Silicon Photonic Crystal



Shawn-Yu Lin and J.G. Fleming, Sandia National Laboratories, Optics and Photonic News / p. 35, December 1998

## Photonic Bandgap Filter in Optical Waveguide



J.S. Foresi, P.R. Villineuve, et al., MIT, Nature, vol. 390, pp. 143-5, 1997

#### Narrow 2-D PBG fiber waveguide: extra "defect" air core filters white light source



http://www.bath.ac.uk.Departments/Physics/opto/research.htm#pbg

### Optical Fiber WDM/PBG Channel Add/ Drop Filter



### **Photonic Crystal Super- Prisms**

### **Key Characteristics**

- Highly anisotropic dispersion engineered "super-prism" material has exceptional angular wavelength dispersion characteristics (NTT, NEC)
- Angular dispersion that is 2 orders of magnitude larger than
  - gratings
  - prisms
  - PBG prism

leads to 2 orders of magnitude shorter WDM elements

- photonic crystal: 0.99 um and 1.00 um separated by 50°
- conventional crystal: 0.99 um and 1.00 um separated < 1°

### Fast Reconfigurable Switches for Micro-WDM

| Parameter         | Electrical                   | Optical                       |  |
|-------------------|------------------------------|-------------------------------|--|
| Ports             | 16                           | 32                            |  |
| Data Rate         | 1 Gbps                       | > 2 Gbps                      |  |
| Media             | fiber                        | fiber                         |  |
| Switch Fabric     | ASIC or network processor    | optical ADM or cross-connects |  |
| Matrix Latency    | 0.5 usec                     | N/A                           |  |
| Connect Time      | 3 usec                       | 0.1 usec to 10's usecs        |  |
| Power Consumption | 45 W per switch card plus    | control only                  |  |
|                   | transceivers                 | (<10 W)                       |  |
| Protocol          | Fibre Channel                | IP                            |  |
| Size              | SEM-E card                   | .001" x .001" to 1' x 1'      |  |
| Markets           | military platforms and telco | military platforms and telco  |  |

• If 3 order of magnitude improvement in optical switching speed, then...

### Possible Electrical to Optical Switch Evolution

- Fast Electrical Packet Switching for Low Port Counts (10's)
- Medium Speed Optical "Circuit" Switching for High Port Counts (1000)
- Fast "MPLS" Optical Switching for "Visionary" Future Systems (TBD)

## Optical Switches\* (in Decreasing Order of Switch Time)

| Technology                                           | Status                 | Max Array<br>Size (N x N) | Switch<br>Array Time | Insertion<br>Loss | Latching |
|------------------------------------------------------|------------------------|---------------------------|----------------------|-------------------|----------|
| Bulk optomechanical (tilting mirrrors)               | Product                | 1 x 16                    | 15 msec              | 2 dB              | Yes      |
| Liquid crystal                                       | Development            | 1 x 8                     | 10 msec              | 3 dB              | No       |
| Bulk optomechanical (free space)                     | Development            | 576 x 576                 | 5 msec               | 6 dB              | No       |
| Thermo-Optic                                         | Product ?              | 8 x 8                     | 1 msec?              | 5 dB              | No       |
| Bubble/ TIR <sup>1</sup>                             | Product                | 32 x 32                   | 1 msec?              |                   | No       |
| Microelectromechanical                               | Development            | 32 x 32                   | 10's usec            | 3 dB              | Yes      |
| Systems (MEMS) <sup>2</sup> (+/- 45 <sup>0</sup> )   | (for Optical Switches) |                           |                      |                   |          |
| 128 Level MEMS <sup>3</sup>                          | Development            | 1000 x                    | 1 msec               |                   |          |
| 2N rather than N <sup>2</sup> Limits                 | (for Optical Switches) | 1000                      |                      |                   |          |
| Microelectromechanical                               | Development            | 32 x 32                   | 10's usec            | 3 dB              | Yes      |
| Systems (MEMS) <sup>2,3</sup> (+/- 45 <sup>0</sup> ) | (for Optical Switches) |                           |                      |                   |          |
| Microelectromechanical                               | Product (for Digital   | 500 K                     | 10's usec            | N/A               | Yes      |
| Systems (MEMS) <sup>1</sup> (+/- 10 <sup>0</sup> )   | Light Projectors)      |                           |                      |                   |          |
| Lithium                                              | Development            | 8 x 8                     | 0.1 usec             | 9 dB              | No       |
| Niobate <sup>4</sup>                                 |                        |                           |                      |                   |          |
| Lithium                                              | Product                | 4 x 4                     | 0.1 usec             | 8 dB              | No       |
| Niobate                                              |                        |                           |                      |                   |          |

<sup>1)</sup> Agilent

<sup>2)</sup> Lucent, OMM, ...

<sup>3)</sup> OMM,

<sup>4)</sup> EO Space, Lucent, ...

## **Micro-WDM Development Needs**

- Define roadmap to large-scale Micro-WDM
- Trade and down-select micro-WDM technologies
- Perform basic device research
- Improve processing technology
- Develop optimum device designs
- Demonstrate passive WDM arrays
- Perform large-scale device integration
- Integrate high port density switches (near term) (and control)
- Demonstrate initial micro-WDM fast switch concepts
- Establish WDM and switch characterization, test, and measurement

## **Aerospace Role**

- Assess system opportunities and benefits
- Assess & guide micro-WDM technology
  - Device modeling
  - Experimental characterization
  - Recommend optimum technology
- Initiate development team and identify "dual-use" apps
  - Universities, Component Manufacturers
    - passive high density arrays
    - fast switch elements
  - Network Companies
    - software control, management, reliability, optical path routing
- Execute WDM-based network demonstrations
  - integrate tunable Tx/Rx with passive arrays and switches
- Engineer WDM-based networks for deployed systems

## Micro-WDM for Reconfigurable Military Information Systems

Goal: Mobile, wideband, scalable, protocol transparent, open systems

#### **Technology Roadmap**



0

#### **Relative Risks**

- Microresonator CDFs today
- PBG and super-prism CDF arrays
- Design and nano-fabrication
- Fast reconfiguration switches

Channel Drop Filter (CDF)

#### **Related Challenges**

- Tunable Sources and Detectors
- Array Cross Talk and Insertion Losses
- Packet or Channel Addressing
- Virtual Light Path Contention:
  - Wavelength Conversion
  - Optical Buffer Memories
  - Synchronization

Summary: 10 um Scale WDM Technology in F/O networks will bring trunking and routing of terabit/sec capacity optical fiber buses to mobile platforms. Fixed and tunable integrated add/drop filters (and N x N optical cross-connects) reduce size and power, provide fault tolerance, reconfiguration, and mixed nets.

#### **Approach**

- Smooth, scalable growth will result in migration from IP/ATM/SONET(ADM and DCS)/DWDM networks to MPLS/ optical mesh networks
- Tunable Tx and Rx will enable single part for WDM transport
- Wavelength routing switches will provision  $\lambda$  paths to resources
- May support mixed RF and digital networks in fault tolerant dual rings (and meshes)

